ListMoto - Scallop

--- Advertisement ---


See text

(/ˈskɒləp, ˈskæləp/)[a] is a common name that is primarily applied to any one of numerous species of saltwater clams or marine bivalve mollusks in the taxonomic family Pectinidae, the scallops. However, the common name "scallop" is also sometimes applied to species in other closely related families within the superfamily Pectinoidea, which also includes the thorny oysters. Scallops are a cosmopolitan family of bivalves which are found in all of the world's oceans, although never in freshwater. They are one of very few groups of bivalves to be primarily "free-living", with many species capable of rapidly swimming short distances and even of migrating some distance across the ocean floor. A small minority of scallop species live cemented to rocky substrates as adults, while others attach themselves to stationary or rooted objects such as sea grass at some point in their lives by means of a filament they secrete called a byssal thread. The majority of species, however, live recumbent on sandy substrates, and when they sense the presence of a predator such as a starfish, they may attempt to escape by swimming swiftly but erratically through the water using jet propulsion created by repeatedly clapping their shells together. Scallops have a well-developed nervous system, and unlike most other bivalves all scallops have a ring of numerous simple eyes situated around the edge of their mantles. Many species of scallop are highly prized as a food source, and some are farmed as aquaculture. The word "scallop" is also applied to the meat of these bivalves, the adductor muscle, that is sold as seafood. The brightly coloured, symmetrical, fan-shaped shells of scallops with their radiating and often fluted ornamentation are valued by shell collectors, and have been used since ancient times as motifs in art, architecture and design. Owing to their widespread distribution, scallop shells are a common sight on beaches and are often brightly coloured, making them a popular object to collect among beachcombers and holidaymakers.[2]


1 Biology

1.1 Distribution and habitat 1.2 Anatomy and physiology

1.2.1 Orientation 1.2.2 Valves 1.2.3 Muscular system 1.2.4 Eyes 1.2.5 Digestive system 1.2.6 Nervous system 1.2.7 Reproduction 1.2.8 Locomotion 1.2.9 Mobility and behavior 1.2.10 Pearls 1.2.11 Mutualism 1.2.12 Lifecycle and growth

1.3 Taxonomy and phylogeny

1.3.1 Etymology 1.3.2 Phylogeny 1.3.3 Taxonomic
structure 1.3.4 List of subfamilies and genera

2 Human Interaction

2.1 Seafood

2.1.1 Aquaculture 2.1.2 Wild fisheries 2.1.3 Sustainability

2.2 As food 2.3 Symbolism of the shell

2.3.1 Christianity Shell of Saint James Shell of Saint Augustine

2.3.2 Fertility symbol 2.3.3 Badge

3 Notes 4 References 5 Bibliography 6 External links

Biology[edit] Distribution and habitat[edit] Scallops inhabit all the oceans of the world, with the largest number of species living in the Indo-Pacific
region. Most species live in relatively shallow waters from the low tide line to 100 meters, while others prefer much deeper water. Although some species only live in very narrow environments, most are opportunistic and can live under a wide variety of conditions. Scallops can be found living within, upon, or under either rocks, coral, rubble, sea grass, kelp, sand, or mud. Most scallops begin their lives as byssally attached juveniles, an ability that some retain throughout their lives while others grow into freeliving adults.[3] Anatomy and physiology[edit] There is very little variation in the internal arrangement of organs and systems within the scallop family, and what follows can be taken to apply to the anatomy of any given scallop species.[4] Orientation[edit]

Anatomical diagram of an Atlantic bay scallop
Atlantic bay scallop
with the left (i.e., upper) valve removed; anterior is to the left, posterior to the right

The shell of a scallop consists of two sides or valves, a left valve and a right one, divided by a plane of symmetry.[5] Most species of scallop rest on their right valve, and consequently this valve is often deeper and more rounded than the left (i.e., upper) valve which in many species is actually concave. With the hinge of the two valves oriented towards the top, one side corresponds to the animal's morphological anterior or front, the other is the posterior or rear, the hinge is the dorsal or back/ top region, and the bottom corresponds to the ventral or (as it were) underside/ belly.[6] However, as many scallop shells are more or less bilaterally symmetrical ("equivalved") as well as symmetrical front/back ("equilateral"), determining which way a given animal is "facing" requires detailed information about its valves.[citation needed] Valves[edit]

Diagram of a scallop with two differently-sized valves shown positioned in ocean floor sediment: the right valve (show at the bottom) much deeper than the left, allowing the scallop to appear less visible to predators

The model scallop shell consists of two similarly shaped valves with a straight hinge line along the top, devoid of teeth and producing a pair of flat wings or "ears" (sometimes called "auricles", though this is also the term for two chambers in its heart) on either side of its midpoint, a feature which is unique to and apparent in all adult scallops.[7] These ears may be of similar size and shape, or the anterior ear may be somewhat larger (the posterior ear is never larger than the anterior one, an important feature for distinguishing which valve is which). As is the case in almost all bivalves, a series of lines and/ or growth rings originate at the center of the hinge, at a spot called the beak surrounded by a generally raised area called the umbo. These growth rings increase in size downwards until they reach the curved ventral edge of the shell. The shell of most scallops is streamlined to facilitate ease of movement during swimming at some point in the life cycle, while also providing protection from predators. Scallops with ridged valves have the advantage of the architectural strength provided by these ridges called ribs, although the ribs are somewhat costly in terms of weight and mass. A feature that is unique to the members of the scallop family is the presence, at some point during the animal's life cycle, of a distinctive and taxonomically important shell feature, a comb-like structure called a ctenolium located on the anterior edge of the right valve next to the valve's byssal notch. Though many scallops lose this feature as they become free-swimming adults, all scallops have a ctenolium at some point during their lives, and no other bivalve has an analogous shell feature. The ctenolium is found in modern scallops only; the ancestors of modern scallops, the entoliids, did not possess it.[8] Muscular system[edit]

A live opened scallop showing the internal anatomy: The pale orange circular part is the adductor muscle; the darker orange curved part is the "coral", a culinary term for the ovary or roe.

Like the true oysters (family Ostreidae), scallops have a single central adductor muscle, thus the inside of their shells has a characteristic central scar, marking the point of attachment for this muscle. The adductor muscle of scallops is larger and more developed than those of oysters, because scallops are active swimmers; some species of scallops are known to move en masse from one area to another. In scallops, the shell shape tends to be highly regular, and is commonly used as an archetypal form of a seashell.[6] Eyes[edit]

Macro photo of a scallop showing some of its bright blue eyes.

Scallops have a large number (10–100) of small (about 1mm) eyes arranged along the edge of their mantle. These eyes represent a particular innovation among molluscs, relying on a concave, parabolic mirror of guanine crystals to focus and retro-reflect light instead of a lens as found in many other eye types.[9] Additionally, their eyes possess a double-layered retina, the outer retina responding most strongly to light and the inner to abrupt darkness.[10] While these eyes are unable to resolve shapes with high fidelity, the combined sensitivity of both retinas to light entering the eye and light retro-reflected from the mirror grants scallops exceptional contrast definition as well as the ability to detect changing patterns of light and motion.[11][12] Scallops primarily rely on their eyes as an 'early-warning' threat detection system, scanning around them for movement and shadows which could potentially indicate predators. Additionally, some scallops alter their swimming or feeding behavior based on the turbidity or clarity of the water, by detecting the movement of particulate matter in the water column.[13] Digestive system[edit] Scallops are filter feeders, and eat plankton. Unlike many other bivalves, they lack siphons. Water moves over a filtering structure, where food particles become trapped in mucus. Next, the cilia on the structure move the food toward the mouth. Then, the food is digested in the digestive gland, an organ sometimes misleadingly referred to as the "liver", but which envelops part of the oesophagus, intestine, and the entire stomach. Waste is passed on through the intestine (the terminus of which, like that of many mollusks, enters and leaves the animal's heart) and exits via the anus.[6]:p.20 Nervous system[edit]

Neural map of a giant scallop

Like all bivalves, scallops lack actual brains. Instead, their nervous system is controlled by three paired ganglia located at various points throughout their anatomy, the cerebral or cerebropleural ganglia, the pedal ganglia, and the visceral or parietovisceral ganglia. All are yellowish. The visceral ganglia are by far the largest and most extensive of the three, and occur as an almost-fused mass near the center of the animal – proportionally, these are the largest and most intricate set of ganglia of any modern bivalve. From these radiate all of the nerves which connect the visceral ganglia to the circumpallial nerve ring which loops around the mantle and connects to all of the scallop's tentacles and eyes. This nerve ring is so well developed that in some species it may be legitimately considered an additional ganglion.[6]:p.46 The visceral ganglia are also the origin of the branchial nerves which control the scallop's gills. The cerebral ganglia are the next largest set of ganglia, and lie distinct from each other a significant distance dorsal to the visceral ganglia. They are attached to the visceral ganglia by long cerebral-visceral connectives, and to each other via a cerebral commissure that extends in an arch dorsally around the esophagus. The cerebral ganglia control the scallop's mouth via the palp nerves, and also connect to statocysts which help the animal sense its position in the surrounding environment. They are connected to the pedal ganglia by short cerebral-pedal connectives. The pedal ganglia, though not fused, are situated very close to each other near the midline. From the pedal ganglia the scallop puts out pedal nerves which control movement of, and sensation in, its small muscular foot.[6]:pp. 43–47 Reproduction[edit] The scallop family is unusual in that some members of the family are dioecious (males and females are separate), while other are simultaneous hermaphrodites (both sexes in the same individual), and a few are protoandrous hermaphrodites (males when young then switching to female). Red roe is that of a female, and white, that of a male. Spermatozoa and ova are released freely into the water during mating season, and fertilized ova sink to the bottom. After several weeks, the immature scallops hatch and the larvae, miniature transparent versions of the adults called spat, drift in the plankton until settling to the bottom again (an event called spatfall) to grow, usually attaching by means of byssal threads. Some scallops, such as the Atlantic bay scallop
Atlantic bay scallop
irradians, are short-lived, while others can live 20 years or more. Age can often be inferred from annuli, the concentric rings of their shells.[6] Locomotion[edit]

Overhead view of a scallop engaged in a zig-zag swimming motion

Overhead view of a scallop engaged in a unidirectional jumping motion

Scallops are mostly free-living and active, unlike the vast majority of bivalves, which are mostly slow-moving and infaunal. It is believed that all scallops start out with a byssus, which attaches them to some form of substrate such as eelgrass when they are very young. Most species lose the byssus as they grow larger. A very few species go on to cement themselves to a hard substrate (e.g. Chlamys distorta and Hinnites
multirigosus).[14] However, the majority of scallops are free-living and can swim with brief bursts of speed to escape predators (mostly starfish) by rapidly opening and closing their valves. Indeed, everything about their characteristic shell shape – its symmetry, narrowness, smooth and/ or grooved surface, small flexible hinge, powerful adductor muscle, and continuous and uniformly curved edge – facilitates such activity. They often do this in spurts of several seconds before closing the shell entirely and sinking back to the bottom of their environment. Scallops are able to move through the water column either forward/ ventrally (termed swimming) by sucking water in through the space between their valves, an area called the gape, and ejecting it through small holes near the hinge line called exhalant apertures, or backward/ dorsally (termed jumping) by ejecting the water out the same way it came in (i.e., ventrally). A jumping scallop will usually land on the sea floor between each contraction of its valves, whereas a swimming scallop will stay in the water column for most or all of its contractions and will travel a much greater distance (though seldom at a height of more than one meter off the sea bed and seldom for a distance of greater than five meters).[14] Both jumping and swimming movements are very energy-intensive and most scallops cannot perform more than four or five in a row before becoming completely exhausted and requiring several hours of rest. Should a swimming scallop land on its left side, it is capable of flipping itself over to its right side via a similar shell-clapping movement called the righting reflex. So-called singing scallops are rumored to make an audible, soft popping sound as they flap their shells underwater (though whether or not this happens is open to some debate).[15] Other scallops can extend their foot from between their valves, and by contracting the muscles in their foot, they can burrow into sand.[16] Mobility and behavior[edit] Most species of the scallop family are free-living active swimmers, propelling themselves through the water through the use of the adductor muscles to open and close their shells. Swimming occurs by the clapping of valves for water intake. Closing the valves propels water with strong force near the hinge via the velum, a curtain-like fold of the mantle that directs water expulsion around the hinge. Scallops swim in the direction of the valve opening, unless the velum directs an abrupt change in course direction.[17][18] Other species of scallops can be found on the ocean floor attached to objects by byssal threads. Byssal threads are strong, silky fibers extending from the muscular foot, used to attach to a firm support, such as a rock. Some can also be found on the ocean floor, moving with the use of an extendable foot located between their valves or burrowing themselves in the sand by extending and retracting their feet.[6] Scallops are highly sensitive to shadows, vibrations, water movement, and chemical stimuli.[19] All possess a series of 100 blue eyes, embedded on the edge of the mantle of their upper and lower valves that can distinguish between light and darkness. They serve as a vital defense mechanism for avoiding predators. Though rather weak, their series of eyes can detect surrounding movement and alert precaution in the presence of predators, most commonly sea stars, crabs, and snails.[6] Physiological fitness and exercise of scallops decreases with age due to the decline of cellular and especially mitochondrial function,[20] thus increasing the risk of capture and lowering rates of survival. Older individuals show lower mitochondrial volume density and aerobic capacity, as well as decreased anaerobic capacity construed from the amount of glycogen stored in muscle tissue.[20] Environmental factors, such as changes in oxidative stress parameters, can inhibit the growth and development of scallops.[21] Seasonal changes in temperature and food availability have shown to affect muscle metabolic capabilities. The properties of mitochondria from the phasic adductor muscle of Euvola ziczac varied significantly during their annual reproductive cycle. Summer scallops in May have lower maximal oxidative capacities and substrate oxidation than any other times in the year. This phenomenon is due to lower protein levels in adductor muscles.[22] Pearls[edit]

A scallop pearl

Scallops do occasionally produce pearls, though scallop pearls do not have the buildup of translucent layers or "nacre" which give desirability to the pearls of the feather oysters, and usually lack both lustre and iridescence. They can be dull, small and of varying colour, but there are exceptions that are appreciated for their aesthetic qualities.[23] Mutualism[edit] Some scallops, including Chlamys hastata, frequently carry epibionts such as sponges and barnacles on their shell. The relationship of the sponge to the scallop is characterized as a form of mutualism, because the sponge provides protection by interfering with adhesion of predatory sea-star tube feet,[24][25][26] camouflages Chlamys hastata from predators,[25] or forms a physical barrier around byssal openings to prevent sea stars from inserting their digestive membranes.[26] Sponge encrustation protects C. hastata from barnacle larvae settlement, serving as a protection from epibionts that increase susceptibility to predators. Thus, barnacle larvae settlement will occur more frequently on sponge-free shells than sponge-encrusted shells.[24] In fact, barnacle encrustation negatively influences swimming in C. hastata. Those swimming with barnacle encrustation require more energy and show a detectable difference in anaerobic energy expenditure than those without encrustation. In the absence of barnacle encrustation, individual scallops swim significantly longer, travel further, and attain greater elevation.[27] Lifecycle and growth[edit] Many scallops are hermaphrodites (having female and male organs simultaneously), altering their sex throughout their lives, while others exist as dioecious species, having a definite sex. In this case, males are distinguished by roe containing white testes and females with roe containing orange ovaries. At the age of two, they usually become sexually active, but do not contribute significantly to egg production until the age of four. The process of reproduction takes place externally through spawning, in which eggs and sperm are released into the water. Spawning typically occurs in late summer and early autumn; spring spawning may also take place in the Mid-Atlantic Bight.[28] The females of scallops are highly fecund, capable of producing hundreds of millions of eggs per year.[28] Once an egg is fertilized, it is then planktonic, which is a collection of microorganisms that drift abundantly in fresh or salt water. Larvae stay in the water column for the next four to seven weeks before dissipating to the ocean floor, where they attach themselves to objects through byssus threads. Byssus
is eventually lost with adulthood, transitioning almost all scallop species into free swimmers. There is rapid growth within the first several years, with an increase of 50 to 80% in shell height and quadrupled size in meat weight and reach commercial size at about four to five years of age.[28] The lifespans of some scallops have been known to extend over 20 years.[29] Taxonomy and phylogeny[edit] Etymology[edit] The family name Pectinidae, which is based on the name of the type genus, Pecten, comes from the Latin pecten meaning comb, in reference to a comb-like structure of the shell which is situated next to the byssal notch.[30] Phylogeny[edit]

scallop Chlamys with encrusters; Nicosia Formation (Pliocene) of Cyprus.

The fossil history of scallops is rich in species and specimens. The earliest known records of true scallops (those with a ctenolium) can be found from the Triassic
period, over 200 million years ago.[31] The earliest species were divided into two groups, one with a nearly smooth exterior: Pleuronectis von Schlotheim, 1820, while the other had radial ribs or riblets and auricles: Praechlamys Allasinaz, 1972.[32] Fossil
records also indicate that the abundance of species within the Pectinidae
has varied greatly over time; Pectinidae
was the most diverse bivalve family in the Mesozoic era, but the group almost disappeared completely by the end of the Cretaceous
period. The survivors speciated rapidly during the Tertiary period. Nearly 7,000 species and subspecies names have been introduced for both fossil and recent Pectinidae.[33] The cladogram is based on molecular phylogeny using mitochondrial (12S, 16S) and nuclear (18S, 28S, and H3) gene markers by Yaron Malkowsky and Annette Klussmann-Kolb in 2012.[34]


(c. 247 mya) Pectinidae

Palliolinae (in part)

Palliolinae (in part) and Camptonectinae


(70 mya) Pecten


(247 mya) Aequipecten

(file shells)

other Pteriomorphia
(oysters, mussels)

structure[edit] Scallops are the family Pectinidae, marine bivalve molluscs within the superfamily Pectinoidea. Other families within this same superfamily share a somewhat similar overall shell shape, and some species within some of the related families are also commonly referred to as "scallops" (for example, Propeamussiidae, the glass scallops). The family Pectinidae
is the most diversified of the pectinoideans in present-day oceans. Pectinidae
is one of the largest marine bivalve families, and containing over 300 extant species in 60 genera. Its origin dates back to the Middle Triassic
Period, approximately 240 million years ago, and in terms of diversity has been a thriving family to present day.[35] Evolution from its origin has resulted in a successful and diverse group: pectinids are present in the world's seas, found in environments ranging from the intertidal zone to the hadal depths. The Pectinidae
play an extremely important role in many benthic communities and exhibit a wide range of shell shape, sizes, sculpture, and culture.[36] Raines and Poppe[b] listed nearly 900 species names of scallops, but most of these are considered either questionable or invalid. Raines and Poppe mentioned over 50 genera and around 250 species and subspecies. Although species are generally well circumscribed, their attribution to subfamilies and genera is sometimes equivocal, and information about phylogeny and relationships of the species is minimal, not the least because most work has been based only on adult morphology.[38] The earliest and most comprehensive taxonomic treatments of this family were based on macroscopic morphological characters of the adult shells and represent broadly divergent classification schemes.[39][40] Some level of taxonomic stability was achieved when Waller's studies in 1986, 1991, and 1993 concluded evolutionary relationships between pectinid taxa based on hypothesized morphological synapomorphies, which previous classification systems of Pectinidae
failed to do. He created three Pectinidae
subfamilies: Camptonectinidae, Chlamydinae and Pectininae.[41][42][43] The framework of its phylogeny shows that repeated life habit states derive from evolutionary convergence and parallelism.[44][45] Studies have determined the family Pectinidae
is monophyletic, developing from a single common ancestor. The direct ancestors of Pectinidae
were scallop-like bivalves of the family Entoliidae.[46] Entoliids had auricles and byssal notch only at youth, but they did not have a ctenolium, a comb-like arrangement along the margins of the byssal notch in Pectinidae. The ctenolium is the defining feature of the modern family Pectinidae
and is a characteristic that has evolved within the lineage.[47] In a 2008 paper, Puslednik et al. identified considerable convergence of shell morphology in a subset species of gliding Pectinidae, which suggests iterative morphological evolution may be more prevalent in the family than previously believed.[48] There have been a number of efforts to address phylogenetic studies. Only three have assessed more than 10 species[49][50][51] and only one has included multiple outgroups.[50] Nearly all previous molecular analyses of the Pectinidae
have only utilized mitochondrial data. Phylogenies based only on mitochondrial sequence data do not always provide an accurate estimation on the species tree. Complicated factors can arise due to the presence of genetic polymorphisms in ancestral species and resultant lineage sorting.[52][53] In molecular phylogenies of the Bivalvia, both the Spondylidae and the Propeamussiidae
have been resolved as sister to the Pectinidae.[50][54] List of subfamilies and genera[edit] Family Pectinidae

Camptonectinae Habe, 1977[55]

Delectopecten Stewart, 1920 Ciclopecten Seguenza, 1877 Lyropecten Conrad, 1862 Pseudohinnites Dijkstra, 1989

Hemipectinae Habe, 1977 (disputed, often in Chlamydinae: Chlamydini)

Adams & Reeve, 1849

Palliolinae Korbkov in Eberzin, 1960

Tribe Palliolini Waller, 1993

Monterosato, 1884 Lissochlamys Sacco, 1897 Placopecten Verrill, 1897 Pseudamussium Mörch, 1853 Mesopeplum
Iredale, 1929


Tribe Decatopectinini Waller, 1986

Anguipecten Dall, Bartsch & Rehder, 1938 Annachlamys
Iredale, 1939 Bractechlamys Iredale, 1939 Decatopecten Rüppell in G. B. Sowerby II, 1839 Excellichlamys Iredale, 1939 Flexopecten
Sacco, 1897 Glorichlamys Dijkstra, 1991 Gloripallium Iredale, 1939 Juxtamusium Iredale, 1939 Mirapecten Dall, Bartsch & Rehder, 1938

Tribe Pectinini Wilkes, 1810

Pecten tigris Lamarck, 1819, museum specimens

Dentamussium Dijkstra, 1990 Pecten Müller, 1776 (includes the Great or King scallop, Pecten maximus, Japanese (sea) scallop, Pecten yessoensis, the New Zealand scallop, Pecten novaezealandiae, and the Ravenel or Round-rib scallop, Pecten raveneli) Euvola Dall, 1898 (includes the Zigzag scallop, Euvola ziczac) Minnivola Iredale, 1939 Serratovola Habe, 1951

Chlamydinae von Teppner, 1922

Tribe Clamydini von Teppner, 1922

Bractechlamys vexillum

Chlamys Röding, 1798 Complichlamys Iredale, 1939 Coralichlamys Iredale, 1939 Equichlamys Iredale, 1929 Hinnites
Deference, 1821 Laevichlamys Waller, 1993 Manupecten Monterosato, 1872 Nodipecten
Dall, 1898 Notochlamys Cotton, 1930 Pascahinnites Dijkstra & Raines, 1999 Pedum Bruguière, 1791 Psychrochlamys Jonkers, 2003 Scaeochlamys Iredale, 1929 Semipallium Jousseaume in Lamy, 1928 Swiftopecten Hertlein, 1936 Veprichlamys Iredale, 1929

Tribe Austrochlamydini Jonkers, 2003

Austrochlamys Jonkers, 2003

Tribe Adamussiini Habe, 1977

Thiele, 1934

Tribe Fortipectinini Masuda, 1963

Mizuhopecten Masuda, 1963 Patinopecten Dall, 1898

Tribe Crassadomini Waller, 1993

Bernard, 1986 Caribachlamys Waller, 1993

Tribe Mimachlamydini Waller, 1993

Iredale, 1929 Spathochlamys Waller, 1993 Talochlamys Iredale, 1935 includes Talochlamys pusio (Linnaeus, 1758) == Chlamys distorta (da Costa, 1778)

Tribe Aequipectinini F. Nordsieck, 1969

Fischer, 1886 (includes Rough scallop
Rough scallop
Aequipecten muscosus) Argopecten
Monterosato, 1889 (includes bay scallop, Argopecten irradians, Atlantic calico scallop
Atlantic calico scallop
gibbus and Pacific calico scallop, Argopecten
ventricosus) Cryptopecten
Dall, Bartsch & Rehder, 1938 Haumea Dall, Bartsch & Rehder, 1938 Leptopecten Verrill, 1897

Leptopecten latiauratus
Leptopecten latiauratus
Conrad, 1837

Volachlamys Iredale, 1939

incertae sedis

Hyalopecten Verrill, 1897

Human Interaction[edit]

nets used to grow spat to juveniles in scallop aquaculture

industry[edit] Aquaculture[edit] Main article: Scallop
aquaculture Wild fisheries[edit] By far the largest wild scallop fishery is for the Atlantic sea scallop ( Placopecten magellanicus) found off northeastern United States and eastern Canada. Most of the rest of the world's production of scallops is from Japan (wild, enhanced, and aquaculture), and China (mostly cultured Atlantic bay scallops).[56] Scallops are most commonly harvested using scallop dredges or bottom trawls. Recently, scallops harvested by divers, hand-caught on the ocean floor, have entered the marketplace.[57] In contrast to scallops captured by a dredge across the sea floor, diver scallops tend to be less gritty. They are also more ecologically friendly, as the harvesting method does not cause damage to undersea flora or fauna.[14]:p.661 Sustainability[edit] In New Zealand, the Tasman Bay
Tasman Bay
area was closed to commercial scallop harvesting from 2009 to 2011 due to a decline in the numbers. In 2011, industry-funded research was conducted into scallop-harvesting patterns. Forest and Bird list scallops as "Worst Choice" in their Best Fish Guide for sustainable seafood species.[58][better source needed] On the east coast of the United States, over the last 100 years, the populations of bay scallops have greatly diminished due to several factors, but probably is mostly due to reduction in sea grasses (to which bay scallop spat attach) caused by increased coastal development and concomitant nutrient runoff. Another possible factor is reduction of sharks from overfishing. A variety of sharks used to feed on rays, which are a main predator of bay scallops. With the shark population reduced – this apex predator in some places almost eliminated – the rays have been free to feed on scallops to the point of greatly decreasing their numbers.[59] By contrast, the Atlantic sea scallop ( Placopecten magellanicus) is at historically high levels of abundance after recovery from overfishing.[60] As food[edit]

Scallops with wine sauce

Wikimedia Commons has media related to Scallop

Scallops are characterized by offering two flavors and textures in one shell: the meat, called "scallop", which is firm and white, and the roe, called "coral", which is soft and often brightly coloured reddish-orange. Sometimes, markets sell scallops already prepared in the shell, with only the meat remaining. Outside the U.S., the scallop is often sold whole. In the UK and Australia, they are available both with and without coral.[61] Scallops without any additives are called "dry packed", while scallops that are treated with sodium tripolyphosphate (STPP) are called "wet packed". STPP causes the scallops to absorb moisture prior to the freezing process, thereby increasing the weight. The freezing process takes about two days.[62] In Galician cuisine, scallops are baked with bread crumbs, ham, and onions.[citation needed] In Japanese cuisine, scallops may be served in soup or prepared as sashimi or sushi.[citation needed] In a sushi bar, hotategai (帆立貝, 海扇) is the traditional scallop on rice, and while kaibashira (貝柱) may be called scallops, it is actually the adductor muscle of any kind of shellfish, e.g., mussels, oysters, or clams.[citation needed] Dried scallop is known in Cantonese Chinese cuisine as conpoy (乾瑤柱, 乾貝, 干貝).[citation needed] Smoked scallops are sometimes served as appetizers or as an ingredient in the preparation of various dishes and appetizers.[63] Scallops have lent their name to the culinary term "scalloped", which originally referred to seafood creamed and served hot in the shell.[64] Today, it means a creamed casserole dish such as scalloped potatoes, which contains no seafood at all.[citation needed]

Adductor muscle meat of the giant scallop (seven white circular items) with a large shrimp

Dried scallops, also known as conpoy

Taiwanese steamed scallops

A scallop being grilled next to sausages in Japan

Fried scallops on stick served with rice

Symbolism of the shell[edit]

Saint James by Carlo Crivelli, c. 1480

Christianity[edit] Shell of Saint James[edit] The scallop shell is the traditional emblem of St James the Great and is popular with pilgrims returning from the Way of St James
Way of St James
and the apostle's shrine at Santiago de Compostela
Santiago de Compostela
in Galicia, Spain.[65] Medieval Christians would collect a scallop shell while at Compostela as evidence of having made the journey. The association of Saint James with the scallop can most likely be traced to the legend that the apostle once rescued a knight covered in scallops. An alternative version of the legend holds that while St. James' remains were being transported to Galicia (Spain)
Galicia (Spain)
from Jerusalem, the horse of a knight fell into the water, and emerged covered in the shells.[66][67] Indeed, in French the animal (as well as a popular preparation of it in cream sauce) is called coquille St. Jacques. In German, they are Jakobsmuscheln – literally "James' mussels". Curiously the Linnaeus name Pecten jacobeus
Pecten jacobeus
is given to the Mediterranean scallop, while the scallop endemic to Galicia is called Pecten maximus
Pecten maximus
due to its bigger size.[68] The scallop shell is represented in the decoration of churches named after St. James, such as in St James' Church, Sydney, where it appears in a number of places, including in the mosaics on the floor of the chancel.[69] When referring to St James, a scallop shell valve is displayed with its convex or outer surface showing. In contrast, when a scallop valve refers to the goddess Venus (see below) the scallop valve is displayed with its concave interior surface showing.[68] Shell of Saint Augustine[edit] Saint Augustine
is said to have been walking along the seashore, meditating on the unfathomable mystery of the Holy Trinity. A boy was using a shell to pour sea water into a little hole. When Augustine asked him what he was doing, he replied, "I am emptying the sea into this hole." Thus did Augustine
understand that man would never penetrate to the depths of the mystery of God.[70] This symbolic meaning was taken up by Joseph Ratzinger
Joseph Ratzinger
in his coat of arms as Archbishop of Munich, and also retained by him when elected Pope Benedict XVI. While a doctoral candidate in 1953, Ratzinger wrote his dissertation on The People of God and the House of God in Augustine's Teaching, and the shell therefore has a personal connection with the thought of Saint Augustine.[70] Fertility symbol[edit] Throughout antiquity, scallops and other hinged shells have symbolized the feminine principle.[71] Outwardly, the shell can symbolize the protective and nurturing principle, and inwardly, the "life-force slumbering within the Earth",[72] an emblem of the vulva.[73][74] Many paintings of Venus, the Roman goddess of love and fertility, included a scallop shell in the painting to identify her. This is evident in Botticelli's classically inspired 15th century painting The Birth of Venus.[75] One legend of the Way of St. James holds that the route was seen as a sort of fertility pilgrimage, undertaken when a young couple desired to bear offspring. The scallop shell is believed to have originally been carried, therefore, by pagans as a symbol of fertility.[76][77] Alternatively, the scallop resembles the setting sun, which was the focus of the pre-Christian Celtic rituals of the area[citation needed]. To wit, the pre-Christian roots of the Way of St. James was a Celtic death journey westwards towards the setting sun, terminating at the End of the World (Finisterra) on the "Coast of Death" (Costa da Morte) and the "Sea of Darkness" (i.e., the Abyss of Death, the Mare Tenebrosum, Latin for the Atlantic Ocean, itself named after the Dying Civilization of Atlantis).[78] The beach at Aldeburgh, Suffolk, England, features Maggi Hambling's metal sculpture, The Scallop, erected in 2003 as a memorial to the composer Benjamin Britten, who had a long association with the town.[79]

Aphrodite Anadyomene, from Amisos, 1st century BC–1st century AD

Large sculpture by Maggi Hambling
Maggi Hambling
titled The Scallop
erected in 2003 on the beach at Aldeburgh, England


A scallop shell in a German coat of arms

The scallop shell symbol found its way into heraldry as a badge of those who had been on the pilgrimage to Compostela, although later it became a symbol of pilgrimage in general. Winston Churchill
Winston Churchill
and Diana, Princess of Wales' family, the Spencer family
Spencer family
coat of arms includes a scallop, as well as both of Diana's sons Prince William, Duke of Cambridge and Prince Harry's personal coats of arms; also Pope Benedict XVI's personal coat of arms includes a scallop; another example is the surname Wilmot and also John Wesley's (which as a result the scallop shell is used as an emblem of Methodism). However, charges in heraldry do not always have an unvarying symbolic meaning, and there are cases of arms in which no family member went on a pilgrimage and the occurrence of the scallop is simply a pun on the name of the armiger (as in the case of Jacques Coeur), or for other reasons.[80] In 1988, the State of New York in the US chose the bay scallop ( Argopecten
irradians) as its state shell.[81] Notes[edit]

^ Also occasionally written scollop and once spelled scalap, -opp, scalop, skalop, scalepp, -oppe, scalloppe, skallap, -op, scallope, scallap, s(c)kollop, and scollup, -op as well as escallop, escalop, and escollop though scallop appears to have become the dominant way of spelling the word in English.[1] ^ Raines, B. K. & Poppe, G. T. (2006): The Family Pectinidae.[37]


^ Whitney, D.W. (1890) Scallop
The Century Dictionary: An Encyclopedic Lexicon of the English Language p.5371, Century Company, and (2009) The Oxford English Dictionary, Second Edition, Oxford University. ^ Robinson & Robinson 2000, p. 65. ^ Shumway & Parsons 2011, p. 207. ^ Shumway & Parsons 2011, p. 124. ^ Milsom & Rigby 2009, p. 62. ^ a b c d e f g h Drew 1906, pp. 5–6. ^ Shumway & Parsons 2011, p. 59. ^ Hautmann, Michael (2010). "The first scallop". Paläontologische Zeitschrift. Springer. 84 (2): 317–322. doi:10.1007/s12542-009-0041-5.  ^ Speiser, Daniel I.; Johnsen, Sönke (2008-12-29). "Comparative Morphology of the Concave Mirror Eyes of Scallops (Pectinoidea)". American Malacological Bulletin. 26 (1–2): 27–33. doi:10.4003/006.026.0204. ISSN 0740-2783.  ^ Speiser, D. I.; Loew, E. R.; Johnsen, S. (2011). "Spectral sensitivity of the concave mirror eyes of scallops: potential influences of habitat, self-screening and longitudinal chromatic aberration". Journal of Experimental Biology. 214 (3): 422–431. doi:10.1242/jeb.048108. PMID 21228201.  ^ "Eyes detect changing movement patterns: queen scallop". asknature.org.  ^ Land, MF; Fernald, RD (1992). "The evolution of eyes" (PDF). Annual Review of Neuroscience. 15: 1–29. doi:10.1146/annurev.neuro.15.1.1.  ^ Speiser, Daniel I.; Johnsen, Sönke (2008-07-01). "Scallops visually respond to the size and speed of virtual particles". Journal of Experimental Biology. 211 (13): 2066–2070. doi:10.1242/jeb.017038. ISSN 0022-0949. PMID 18552295.  ^ a b c Shumway & Parsons 2011, pp. 689–690. ^ Dore 2013, p. 152. ^ Gosling 2015, p. 29. ^ Cheng, J.-Y.; Davison, I. G.; Demont, M. E. (1996). "Dynamics and energetics of scallop locomotion". Journal of Experimental Biology. 199 (9): 1931–1946.  ^ Joll, L. M. (1989). "Swimming behavior of the saucer scallop Amusium balloti (Mollusca: Pectinidae)". Marine Biology. 102 (3): 299–305. doi:10.1007/BF00428481.  ^ Land, M.F. (1966). "Activity in the optic nerve of Pecten maximus
Pecten maximus
in response to changes in light intensity, and to pattern and movements in optical environment" (PDF). Journal of Experimental Biology. 45 (1): 83–99.  ^ a b Philipp, E.E.R.; Schmidt, M.; Gsottbauer, C.; Sänger, A. M.; Abele, D. (2008). "Size- and age- dependent changes in adductor muscle swimming physiology of the scallop Aequipecten
opercularis". Journal of Experimental Biology. 211 (15): 2492–2501. doi:10.1242/jeb.015966. PMID 18626084.  ^ Guerra, C.; Zenteno-Savín, T.; Maeda-Martínez, A. N.; Abele, D.; Philipp, E. E. R. (2013). "The effect of predator exposure and reproduction on oxidative stress parameters in the Catarina scallop Argopecten
ventricosus". Comparative Biochemistry and Physiology A. 165 (1): 89–96. doi:10.1016/j.cbpa.2013.02.006.  ^ Boadas, M.A.; Nusetti, O.; Mundarain, F. (1997). "Seasonal variation in the properties of muscle mitochondria from the tropical scallop Euvola (Pecten) ziczac". Marine Biology. 128 (2): 247–255. doi:10.1007/s002270050089.  ^ Matlins 2001, p. 56. ^ a b Bloom, S. (1975). "The motile escape response of a sessile prey: a sponge-scallop mutualism". Journal of Experimental Biology and Ecology. 17 (3): 311–321. doi:10.1016/0022-0981(75)90006-4.  ^ a b Pitcher, C.R.; Butler, A.J. (1987). "Predation by asteroids, escape response, and morphometrics of scallops with epizoic sponges". Journal of Experimental Marine Biology and Ecology. 112 (3): 233–249. doi:10.1016/0022-0981(87)90071-2.  ^ a b Forester, A.J. (1979). "The association between the sponge Halichondria panicea (Pallas) and scallop Chlamys varia (L.): a commensal protective mutualism". Journal of Experimental Marine Biology and Ecology. 36 (1): 1–10. doi:10.1016/0022-0981(79)90096-0.  ^ Donovan, D.; Bingham, B.; Farren, H.; Gallardo, R.; Vigilant, V. (2002). "Effects of sponge encrustation on the swimming behaviour energetics and morphometry of the scallop Chlamys hastata" (PDF). Journal of the Marine Biological Association of the United Kingdom. 82 (3): 469–476. doi:10.1017/s0025315402005738.  ^ a b c Hart, D.R.; Chute, A.S. (2004). "Essential Fish Habitat Source Document: Sea Scallop, Placopecten magellanicus, Life History and Habitat Characteristics" (PDF). NOAA Tech Memo NMFS NE-189.  ^ " Scallop
Aquaculture" (PDF). College of Marine Science.  ^ Rice 2012, p. 47. ^ Treatise on Invertebrate Paleontology Geological Society of America, Kansas, Part N, Vol. I (1969) p. N348. ^ Waller, T. R. (1993). "The evolution of Chlamys (Mollusca: Bivalvia: Pectinidae) in the tropical western Atlantic and eastern Pacific". American Malacological Bulletin. 10 (2): 195–249.  ^ Harper et al. 2000, p. 254. ^ Malkowsky, Yaron; Klussmann-Kolb, Annette (May 2012). " Phylogeny
and spatio-temporal distribution of European Pectinidae
(Mollusca: Bivalvia)" (PDF). Systematics and Biodiversity. 10 (2): 233–242. doi:10.1080/14772000.2012.676572.  ^ Waller, Thomas R. (2006). Shumway, Sandra E., ed. New phylogenies of the Pectinidae
(Mollusca: Bivalvia): Reconciling morphological and molecular approaches. Scallops: biology, ecology and aquaculture II. Amsterdam: Elsevier. pp. 1–44.  ^ Brand, A.R. (2006). " Scallop
ecology: distributions and behavior". Scallops: Biology, Ecology and Aquaculture. 35: 651–744. doi:10.1016/S0167-9309(06)80039-6.  ^ Raines, Poppe & Groh 2006. ^ Barucca, M., Olmo, E., Schiaparelli, S. & Canapa, A. (2004): Molecular phylogeny of the family Pectinidae
(Mollusca: Bivalvia) ^ Waller, Thomas R. (1972). The functional significance of some shell micro-structures in the Pectinacea. Paleontology. International Geological Congress. pp. 48–56.  ^ Shumway, Sandra E.; Parsons, G. Jay, eds. (7 June 2016). Scallops: Biology, Ecology, Aquaculture, and Fisheries. Elsevier
Science. p. 5. ISBN 978-0-444-62719-3.  ^ Waller, Thomas R. (1986). "A new genus and species of scallop (Bivalvia: Pectinidae) from off Somalia, and the definition of a new tribe Decatopectinin i". Nautilus. 100 (2): 39–46. doi:10.5962/bhl.part.26491.  ^ Shumway & Waller 1991, pp. 1–73. ^ Waller, Thomas R. (1993). "The evolution of "Chlamys" (Mollusca: Bivalvia: Pectinidae) in the tropical western Atlantic and eastern Pacific". American Malacological Bulletin. 10 (2): 195–249.  ^ Alejandrino, A.; Puslednik, L.; Serb, J. M. (2011). "Convergent and parallel evolution in life habit of the scallops". BMC Evolutionary Biology. 11 (1): 164. doi:10.1186/1471-2148-11-164. PMC 3129317 . PMID 21672233.  ^ Waller, Thomas R. (2007). "The evolutionary and biogeographic origins of the endemic Pectinidae
(Mollusca: Bivalvia) of the Galápagos Islands". Journal of Paleontology. 81 (5): 929–950. doi:10.1666/pleo05-145.1.  ^ Dijkstra, H.H.; Maestrati, P. (2012). " Pectinoidea
(Mollusca, Bivalvia, Propeamussiidae, Cyclochlamydidae n. fam., Entoliidae and Pectinidae) from the Vanuatu Archipelago". Zoosystema. 34 (2): 389–408. doi:10.5252/z2012n2a12.  ^ Waller, Thomas R. (1984). "The ctenolium of scallop shells: functional morphology and evolution of a key family-level character in the Pectinacea (Mollusca: Bivalvia)". Malacologia. 25 (1): 203–219.  ^ Puslednik, L.; Serb, J.M. (2008). "Molecular phylogenetics of the Pectinidae
(Mollusca: Bivalvia) and the effect of outgroupselection and increased taxon sampling on tree topology". Molecular Phylogenetics and Evolution. 48 (3): 1178–1188. doi:10.1016/j.ympev.2008.05.006. PMID 18579415.  ^ Barucca, M.; Olmo, E.; Schiaparelli, S.; Capana, A. (2004). "Molecular phylogeny of the family Pectinidae
(Mollusca: Bivalvia) based on mitochondrial 16S and 12S rRNA genes". Molecular Phylogenetics and Evolution. 31 (1): 89–95. doi:10.1016/j.ympev.2003.07.003. PMID 15019610.  ^ a b c Matsumoto, M.; Hayami, I. "Phylogenetic analysis of the family Pectinidae
(Bivalvia) based on mitochondrial cytochrome C oxidase subunit" (PDF). Journal of Molluscan Studies. 66 (4): 477–488. doi:10.1093/mollus/66.4.477.  ^ Saavedra, C.; Peña, J.B (2006). "Phylogenetics of American scallops (Bivalvia: Pectinidae) based on partial 16S and 12S ribosomal RNA gene sequences". Marine Biology. 150 (1): 111–119. doi:10.1007/s00227-006-0335-z.  ^ Pamilo, P.; Nei, M. (1988). "Relationships between gene trees and species trees". Molecular Biology and Evolution. 5 (5): 568–583. PMID 3193878.  ^ Wu, C.I. (1991). "Inferences of species phylogeny in relation to segregation of ancient polymorphisms" (PDF). Genetics. 127 (2): 429–435. PMC 1204370 . PMID 2004713.  ^ Waller, Thomas R., 1998. Origin of the Molluscan Class Bivalvia
and a Phylogeny
of Major Groups. Pp. 1–45. In: P.A. Johnston & J.W. Haggart (eds), Bivalves: An Eon of Evolution. Calgary: University of Calgary Press xiv + 461 pp. ^ Habe 1977. ^ Shumway & Parsons 2011, p. 902. ^ Walker, Margaret (1991). "What price Tasmanian scallops? A report of morbidity and mortality associated with the scallop diving season in Tasmania 1990". South Pacific Underwater Medicine Society
South Pacific Underwater Medicine Society
Journal. 21 (1). Retrieved 2013-07-16.  ^ "Scallops". Forest and Bird.  ^ Pinet 2011, p. 333. ^ Granata, Flick & Martin 2012, p. 96. ^ Shumway & Parsons 2011, p. 1355. ^ Rolnick & Peterson 2014, p. 47. ^ Broder, Andy (June 7, 2012). "AndyTalk: Beyond Lox – Smoked Seafood
Hold the Bagels". Phoenix New Times. Retrieved January 31, 2017.  ^ Rombauer & Becker 1964, p. 369. ^ Thomas, Hope B. Werness; line drawings by Joanne H. Benedict and Hope B. Werness; additional drawings by Tiffany Ramsay-Lozano and Scott (2003). The continuum encyclopedia of animal symbolism in art. New York: Continuum. p. 359. ISBN 9780826415257.  ^ Starkie 1965, p. 71. ^ The Editors of Encyclopædia Britannica
Encyclopædia Britannica
(November 26, 2008). " Scallop
BIVALVE". Encyclopædia Britannica. Retrieved January 21, 2017.  ^ a b Davies, Paul; Howard, Deborah; Pullan, Wendy, eds. (2013). Architecture and pilgrimage, 1000–1500: southern Europe and beyond. Aldershot, Hamps.: Ashgate Publishing. pp. 73–86. ISBN 9781472410832.  ^ The Church 1963, p. 22. ^ a b Willard & Owens 1997, p. 68. ^ Salisbury 2001, p. 11. ^ Fontana 1994, pp. 88, 103. ^ Gutzwiller, K (1992). "The Nautilus, the Halycon, and Selenaia: Callimachus's Epigram 5 Pf.= 14 G.-P". Classical Antiquity. University of California Press. 11 (2): 175–193.  ^ Johnson 1994, p. 230. ^ "Birth of Venus". artble.com. 2017. Retrieved 25 February 2017.  ^ Slavin, S (2003). "Walking as Spiritual Practice: The Pilgrimage to Santiago de Compostela". Body and Society. 9 (1): 18. doi:10.1177/1357034X030093001.  ^ Gauding 2009, p. 169. ^ Thomas, Isabella. "Pilgrim's Progress". Europe in the UK. European Commission. Archived from the original on March 23, 2008. Retrieved January 21, 2017.  ^ Dunford & Lee 2012, p. 486. ^ Stix, Stix & Abbott 1968, p. [pages needed]. ^ "New York State Shell: Bay Scallop". State Symbols USA. Retrieved 2012-05-24. 


Dore, Ian (29 June 2013). The New Fresh Seafood
Buyer's Guide: A manual for distributors, restaurants and retailers. Boston, MA: Springer Science & Business Media. p. 152. ISBN 978-1-4757-5990-7.  Drew, Gilman Arthur (1906), The Habits Anatomy, and Embryology of the Giant Scallop: (Pecten Tenuicostatus, Mighels), Orono, Maine, pp. 5–6  Dunford, Martin; Lee, Phil (13 September 2012). The Rough Guide to Norfolk & Suffolk. Rough Guides. p. 486. ISBN 978-1-4053-9037-8.  Fontana, David (1994). The secret language of symbols: a visual key to symbols and their meanings. San Francisco: Chronicle Books. pp. 88, 103. ISBN 978-0-8118-0462-2.  Gauding, Madonna (2009). The Signs and Symbols Bible: The Definitive Guide to Mysterious Markings. Sterling Publishing Company. p. 169. ISBN 978-1-4027-7004-3.  Gosling, Elizabeth (27 April 2015). Marine Bivalve
Molluscs. John Wiley & Sons. p. 29. ISBN 978-1-119-04522-9.  Granata, Linda Ankenman; Flick, George J., Jr.; Martin, Roy E. (8 February 2012). The Seafood
Industry: Species, Products, Processing, and Safety. John Wiley & Sons. p. 96. ISBN 978-1-118-22953-8.  Habe, Tadashige (1977). " Bivalvia
and Scaphopoda". Systematics of mollusca in Japan: Bivalvia
and Scaphopoda. Hokuryukan.  Harper, Elizabeth; Taylor, John David; Crame, J. Alistair; Geological Society of London (2000). The Evolutionary Biology of the Bivalvia. Geological Society of London. ISBN 978-1-86239-076-8.  Johnson, Buffie (1994). Lady of the beasts: the Goddess and her sacred animals. Rochester, Vt: Inner Traditions/ Bear
& Company. p. 230. ISBN 978-0-89281-523-4.  Matlins, Antoinette, L. (2001). The Pearl
Book: The Definitive Buying Guide: how to Select, Buy, Care for & Enjoy Pearls. New York, NY: Gemstone. p. 56. ISBN 978-0-943763-35-4.  Milsom, Clare; Rigby, Sue (1 April 2009). Fossils at a Glance. Chichester: John Wiley & Sons. p. 62. ISBN 978-1-4443-1123-5.  Pinet, Paul R. (28 December 2011). Invitation to Oceanography. Jones & Bartlett Publishers. p. 333. ISBN 978-1-4496-0192-8.  Rice, Tony (3 December 2012). Can Squid
Fly? Can squid fly?: answers to a host of fascinating questions about the sea and sea life. London: Thomas Reed publications, Bloomsbury Publishing. p. 47. ISBN 978-1-4081-5130-3.  Rolnick, Glenn; Peterson, Chris (November 4, 2014). Carmine's celebrates: classic Italian recipes for everyday feasts. New York: St. Martin's Press. p. 47. ISBN 978-1-4668-3723-2.  Raines, Bret K.; Poppe, Guido T.; Groh, Klaus (2006). A conchological iconography. Hackenheim Germany: ConchBooks. p. 402. ISBN 3-925919-78-3.  Robinson, Chuck; Robinson, Debbie (2000). The Art of Shelling: A Complete Guide to Finding Shells and Other Beach Collectibles at Shelling Locations from Florida to Maine. Old Squan Village Publishing. p. 65. ISBN 978-0-9647267-8-9.  Rombauer, Irma S.; Becker, Marion Rombauer (1964) [1931]. The Joy of Cooking. Indianapolis, Indiana: Bobbs-Merrill. p. 369. ISBN 0-452-25665-8.  Salisbury, Joyce E. (2001). Encyclopedia of women in the ancient world. Santa Barbara, Calif: ABC-CLIO. p. 11. ISBN 978-1-57607-092-5.  Shumway, Sandra E.; Parsons, G. Jay, eds. (22 September 2011). Scallops: Biology, Ecology and Aquaculture
(2nd ed.). Amsterdam Boston: Elsevier. pp. 689–690. ISBN 978-0-08-048077-0.  Starkie, Walter (1965) [1959]. The Road to Santiago. Berkeley, Los Angeles: University of California Press. p. 71. Retrieved 20 January 2017.  Stix, Hugh; Stix, Marguerite; Abbott, Robert Tucker (1968). The Shell: Five Hundred Million Years of Inspired Design (First ed.). New York NY: Harry N. Abrams, Inc.
Harry N. Abrams, Inc.
ISBN 0810904756. ISBN 978-0810904750.  Willard, Barbara; Owens, Mary B. (1 September 1997). Augustine
came to Kent. Warsaw, N.D. San Francisco: Bethlehem Books, Ignatius Press. ISBN 978-1-883937-21-8. 

External links[edit]

Look up scallop in Wiktionary, the free dictionary.

has information related to Pectinidae

Rotterdam Natural History Museum Natural History Museum Rotterdam – photos of Pectinidae

v t e

Commercial mollusks

Marine gastropods

Abalone Periwinkle Whelk Buccinum undatum Bullacta exarata

Land and freshwater gastropods

Helix pomatia Helix aspersa Helix aperta Cepaea nemoralis Otala lactea Escargot

Free-swimming marine bivalves

Scallop Queen scallop Pecten maximus Pecten jacobaeus Argopecten
irradians Placopecten magellanicus

Infaunal bivalves


Atlantic surf clam Soft-shell clam

Mercenaria mercenaria Austrovenus stutchburyi Saxidomus nuttalli Arctica islandica Cockle Geoduck Spisula solidissima Paphies
ventricosa Paphies
australis Tuatua Ruditapes largillierti Grooved carpet shell

Sessile bivalves

Oyster Mussel Pearl
oyster Pinctada maxima

Freshwater bivalves

Freshwater pearl mussel


Octopus Squid


Heliciculture Gathering by hand Clam
digging Dredging Oyster
farming Oyster
boats Pearl
farming Pearl
diving Ama divers Trawling

List of fishing topics by subject

v t e

Principal commercial fishery species groups


Large pelagic fish

Mackerel Salmon Saury Shark Swordfish Tuna

albacore bigeye Atlantic bluefin Pacific bluefin southern bluefin skipjack yellowfin

Forage fish

Anchovy Capelin Herring Ilish Menhaden Sardines Shad Sprat


Demersal fish

Catfish Cod

Atlantic Pacific Alaska pollock


flounder halibut plaice sole turbot

Haddock Mullet Orange roughy Pollock Rockfish Smelt-whitings Toothfish

Freshwater fish

Carp Sturgeon Tilapia Trout

Other wild fish

Eel Whitebait more...


Crab Krill Lobster Shrimp more...


Abalone Mussels Octopus Oysters Scallops Squid more...


Sea cucumbers Sea urchin more...



bighead common crucian grass silver

Catfish Freshwater prawns Gilt-head bream Mussels Oysters Salmon

Atlantic salmon trout coho chinook

Scallops Seaweed Shrimp Tilapia

Commercial fishing World fish production Commercial species Fishing
topics Fisheries glossary

v t e

Edible mollusks



Atlantic jackknife Atlantic surf Geoduck Grooved carpet shell Hard clam Horse Mactra stultorum Blunt gaper Ocean quahog Pacific razor Venus California butterclam Senilia senilis Smooth clam Soft-shell Triangle shell Tuatua Japanese littleneck Razor clam Pod razor Ensis
(razor genus) Paphies


Common Blood Goolwa New Zealand Sydney


Blue Mediterranean New Zealand green-lipped California Brown Asian/Philippine green Date Mytilidae
(mussel family)


Auckland Eastern Olympia Southern mud Colchester native Pacific Portuguese Windowpane Rock Sydney rock Ostra chilena/Bluff Gillardeau oysters Crassostrea
("true oyster" genus)


Atlantic bay Great/king New Zealand Pecten jacobaeus Peruvian calico Yesso Placopecten magellanicus



White Red Black Green Pink Blacklip Greenlip Green ormer Pāua
(group of three species) South African abalone Chilean


Queen Elegant Dog


Black-foot opihi/Hawaiian Turtle/talc Yellow-foot opihi China Common European Rayed Mediterranean Ribbed Mediterranean Rustic


Common Banded Littorina sitkana


Common Kellet's Knobbed Lightning Channeled

Other snails


Mud-flat Korean mud Chorus giganteus


Cornu aspersum Helix lucorum Helix pomatia





Spineless Bottletail


Common Atlantic white-spotted Big blue Pacific giant Southern red Mimic Amphioctopus fangsiao


New Zealand arrow Japanese flying Humboldt Neon flying


magnificus Acanthopleura granulata

Related topics Oyster
farming Land snail
Land snail
farming Gastropod
anatomy Bivalve

v t e


Armiger Law of heraldic arms Grant of arms Blazon

Officers and officials

Authorities Officers of arms

King of Arms, Herald, Pursuivant

Private Officer of Arms

Conventional elements of coats of arms

Escutcheon Chief Field (Tincture) Division Supporter Supporter Slogan (battle cry) Crest Torse Mantling Helmet/Galero Crown/Coronet Compartment Order Ordinaries Charges Motto Dexter Sinister (right) (left)

Types of coats of arms

National coat of arms Ecclesiastical heraldry Burgher arms Civic heraldry Canting arms Attributed arms

Heraldic achievement

Escutcheon (shield)


Divisions Variations

Charge Chief Lines Ordinary Augmentation of honour Cadency Marshalling

Quartering Impalement

Pale Bar Bend Bordure Canton Chevron Cross Fess Flaunch Gyron Label Lozenge Orle Pall Roundel Saltire



Bear Boar Bull/Ox Dog/Hound Camelopard (giraffe) Hind/Stag (deer) Kangaroo Leopard Lion Wolf


Cock Dove Eagle Martlet Pelican Rook

Sea creatures

Dolphin Ged Seahorse Lucy (esox) Scallop

Legendary creatures

Allocamelus Alphyn Basilisk Biscione Chollima Cockatrice Dragon Enfield Garuda Griffin/Keythong Harpy Konrul Lampago Lindworm Manticore Mermaid Pantheon Panther Pegasus Phoenix Salamander Hippocampus Hippogriff Sea-lion Turul Tyger Unicorn Wyvern Yale


Bat Bee Crapaudy (toad) Emmet (ant) Serpent


Bourchier knot Bowen knot Cavendish knot Dacre knot Harrington knot Hastings knot Heneage knot Hinckaert knot Hungerford knot Lacy knot Medici knot Morvillier knot Ormonde knot Savoy knot Shakespeare knot Stafford knot Trafford knot Tristram knot Wake knot

Tinctures Rules Tricking Hatching


(white)      Or (gold)


     Gules (red)      Sable (black)      Azure (blue)      Vert (green)      Purpure (purple)



Erminois Erminites Pean




(mulberry)      Sanguine (blood red)      Tenné





     Bleu-celeste      Carnation      Cendrée      Orange      Rose


Crowns and coronets Crest Compartment Helmet Mantling Motto Supporter Torse Mantle and pavilion

See also

List of oldest heraldry Heraldic flag
Heraldic flag
(Banner of arms) Heraldic badge Women in heraldry Socialist heraldry Vexillology

1 Non-traditional, rarely used traditions in italic (typically regional or modern, considered unheraldic by some) Heraldry
portal Portal:Heraldry/Web resources

v t e

Living things in culture

Academic disciplines

Anthrozoology Ethnobiology

Ethnobotany Ethnoecology Ethnoentomology Ethnoherpetology Ethnoichthyology Ethnolichenology Ethnomycology Ethnoornithology Ethnoprimatology Ethnozoology






Beekeeping Entomophagy Flea
circus Insects in art Insects in literature Insects in medicine Insects in music Insects in mythology Insects in religion Sericulture


Ant Bee




Butterfly Cicada Cricket Dragonfly Flea


Fly Grasshopper Ladybird Louse Praying mantis Scarab Termite Wasp Woodworm


Arthropods in film Crab Lobster Scorpion Spider

Arachnophobia Tarantella



in popular culture Conch
(instrument) Conchology Edible molluscs Octopus Pearl Scallop Seashell Sea silk Shell money Shipworm Tyrian purple Venus shell



Frog Salamander Toad



Aviculture Birdwatching Bird conservation Birds in culture Cockfighting Falconry Game bird Pigeon racing Poultry Archaeopteryx Barnacle goose Eagle




Fish farming Fishkeeping Recreational fishing Shark

Attacks Jaws



husbandry Fur farming Hunting In sport In professional wrestling Laboratory animal Livestock Pack animal Working animal


Bat Bear

Baiting Hunting Teddy bear

Cattle Deer Elephant Dolphin Fox Horse

Riding Worship

Leopard Lion Primate

Gorilla Gorilla suit Monkey Orangutan



Sheep Whale

Tay Whale Whaling Whale





Attacks Farming Crocodile


Crystal Palace Dinosaurs Jurassic
Park Stegosaurus Triceratops Tyrannosaurus rex

Dragon Lizard Snake

Caduceus In the Bible Rod of Asclepius Snakebite Snake
charming Symbolism Worship


Bixi World Turtle

Other phyla

Coral Jellyfish Starfish


Aesop's Fables Animal
epithet Animal
husbandry In heraldry Lists of legendary creatures Man-eater Zodiac




Botanical illustration Floral design


Gardening Herbalism Fictional plants Magical plants


Medicinal plants Pharmacognosy Plant epithet Sacred grove

In India

Sacred plants

Bodhi Tree Lime tree Sacred lotus Sacred herb

In mythology

Barnacle tree Fig Trees Yggdrasil


Medicinal fungi Amanita muscaria Edible mushroom

Agaricus bisporus

Psilocybin mushroom


Biological warfare Fermentation

In food processing List of microbes

Microbial art Microbes and Man Pathogen Protein production Bacteria

Economic importance Tuberculosis

Protist Virus Yeast

Bread Beer Wine


Anthropomorphism Fossil Legendary creature Lists of fictional species Parasitoid Template:Insects in culture


Time at 25453739.766667, Busy percent: 30
***************** NOT Too Busy at 25453739.766667 3../logs/periodic-service_log.txt
1440 = task['interval'];
25454671.35 = task['next-exec'];
0 = task['last-exec'];
daily-work.php = task['exec'];
25453739.766667 Time.

10080 = task['interval'];
25463311.35 = task['next-exec'];
0 = task['last-exec'];
weekly-work.php = task['exec'];
25453739.766667 Time.

30 = task['interval'];
25453742.383333 = task['next-exec'];
25453712.383333 = task['last-exec'];
PeriodicStats.php = task['exec'];
25453739.766667 Time.

1440 = task['interval'];
25454671.35 = task['next-exec'];
0 = task['last-exec'];
PeriodicBuild.php = task['exec'];
25453739.766667 Time.

1440 = task['interval'];
25454671.35 = task['next-exec'];
0 = task['last-exec'];
build-sitemap-xml.php = task['exec'];
25453739.766667 Time.

60 = task['interval'];
25453771.8 = task['next-exec'];
25453711.8 = task['last-exec'];
cleanup.php = task['exec'];
25453739.766667 Time.

60 = task['interval'];
25453771.833333 = task['next-exec'];
25453711.833333 = task['last-exec'];
parse-contens.php = task['exec'];
25453739.766667 Time.